Respuesta :
Explanation:
(a) Â Formula for work done in isothermal process is as follows.
    [tex]W = -2.303nRT log (\frac{V_{f}}{V_{i}})[/tex]
          = [tex]-2.303 \times 1 mol \times 8.314 J/mol K \times 300 K \times log (\frac{10.0 L}{5.0 L})[/tex]
          = -1729 J
And, for isothermal process
    [tex]\Delta U = nC_{v} \Delta T[/tex]
          = [tex]nC_{v} \times 0[/tex]
According to the first law of thermodynamics,
     [tex]\Delta H_{sys} = -W[/tex]
Hence, [tex]\Delta H_{sys} = -W[/tex] = 1729 J
Also, Â [tex]\Delta S_{sys} = \frac{\Delta H_{sys}}{T_{sys}}[/tex]
             = [tex]\frac{1729}{300}[/tex]
             = 5.763 J/K
Here, Â [tex]\Delta H_{surr} = \Delta H_{sys}[/tex] = -1729 J
So, [tex]\Delta S_{surr} = \frac{\Delta H_{surr}}{T_{surr}}[/tex]
    [tex]\frac{\Delta H_{surr}}{T_{surr}}[/tex] = [tex]\frac{-1729 J}{\Delta S_{surr}}[/tex]
 [tex]\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}[/tex]
         = 5.763 J/K - [tex]\frac{-1729 J}{\Delta S_{surr}}[/tex]
Hence, entropy changes for reversibly by adjusting the pressure of the surroundings to match the internal pressure of the gas is 5.763 J/K - [tex]\frac{-1729 J}{\Delta S_{surr}}[/tex].
(b) Â Now, formula for work done in irreversible isothermal process is as follows.
       W = [tex]-P_{ext} \times \Delta V[/tex]
          = [tex]-2.0 \times 10^{5} Pa \times 5 \times 10^{-3} m^{3}[/tex]
          = -1000 J
For isothermal irreversible process,
      [tex]\Delta U[/tex] = 0
And, Â Â [tex]\Delta H_{sys}[/tex] = -W + 1000 J
    [tex]\Delta S_{sys} = \frac{\Delta H_{sys}}{T_{sys}}[/tex]
           = [tex]\frac{1000 J}{300 K}[/tex]
           = 3.33 J/K
  [tex]\Delta H_{surr} = -\Delta H_{sys}[/tex] = -1000 J
Therefore, Â [tex]\Delta S_{surr} = \frac{\Delta H_{surr}}{T_{surr}} = \frac{-1000 J}{T_{surr}}[/tex]
As, Â [tex]\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}[/tex]
           = [tex]3.33 J/K - \frac{1000 J}{T_{surr}}[/tex]
Hence, for irreversibly entropy changes freely expanding in a vacuum is [tex]3.33 J/K - \frac{1000 J}{T_{surr}}[/tex].